Có một số cách để tiếp cận điều này trong khuôn khổ tổng hợp mà không cần dùng đến mapReduce. MongoDB 2.6 gần đây và các phiên bản cao hơn có một số toán tử để trợ giúp ở đây bằng cách sử dụng $let
và $map
để xác định một biến và xử lý mảng.
Khai báo bên ngoài của bạn trông đẹp hơn cho những mục đích như thế này:
var norm = [
{ "key": 1, "value": 1 },
{ "key": 2, "value": 1.16 },
{ "key": 3, "value": 1.413 },
{ "key": 4, "value": 1.622 },
{ "key": 5, "value": 1.6 },
{ "key": 6, "value": 1.753 },
{ "key": 7, "value": 3.001 },
{ "key": 8, "value": 2.818 },
{ "key": 9, "value": 3.291 },
{ "key": 10,"value": 2.824 },
{ "key": 11, "value": 2.993 },
{ "key": 12, "value": 2.699 },
{ "key": 13, "value": 1.099 },
{ "key": 14, "value": 1.035 },
{ "key": 15, "value": 1.172 },
{ "key": 16, "value": 1.013 },
{ "key": 17, "value": 0.9936 },
{ "key": 18, "value": 1.069 }
];
Và sau đó xử lý báo cáo tổng hợp:
db.mycoll.aggregate([
{ "$match": {
"_id.day" : ISODate("2014-06-19T00:00:00.000Z"),
"_id.lt" : "l",
"_id.rt" : "rltdlsts",
"_id.m": false
}},
{ "$unwind": "$value.rl" },
{ "$match": { "value.rl.p": { "$gte": 1, "$lte": 18 } } },
{ "$project": {
"value": 1,
"norm": {
"$let": {
"vars": {
"norm": norm
},
"in": {
"$setDifference": [
{ "$map": {
"input": "$$norm",
"as": "norm",
"in": {
"$cond": [
{ "$eq": [ "$$norm.key", "$value.rl.p" ] },
"$$norm.value",
false
]
}
}},
[false]
]
}
}
}
}},
{ "$unwind": "$norm" }
{ "$group": {
"_id": "$value.rl.a",
"v": { "$sum": "$value.rl.v" },
"c": { "$sum": "$value.rl.c" },
"nv": { "$sum": { "$multiply": [ "$norm", "$value.rl.v" ] } }
}}
])
Trong $project
đó
giai đoạn bạn đang thực sự đưa khai báo bên ngoài dưới dạng một biến mảng vào đường dẫn và sau đó xử lý từng phần tử để khớp với các khóa "value.rl.p" hiện có của bạn. Điều này chỉ trả về một giá trị phù hợp duy nhất, vì vậy việc sử dụng thêm $unwind
thực sự chỉ làm cho kết quả mảng phần tử đơn trở thành một giá trị duy nhất để sử dụng trong $group
bản tường trình.
Cách tiếp cận truyền thống trong các phiên bản trước đó không hỗ trợ toán tử là sử dụng $cond
tuyên bố để đánh giá từng giá trị:
db.mycoll.aggregate([
{ "$match": {
"_id.day" : ISODate("2014-06-19T00:00:00.000Z"),
"_id.lt" : "l",
"_id.rt" : "rltdlsts",
"_id.m": false
}},
{ "$unwind": "$value.rl" },
{ "$match": { "value.rl.p": { "$gte": 1, "$lte": 18 } } },
{ "$group": {
"_id": "$value.rl.a",
"v": { "$sum": "$value.rl.v" },
"c": { "$sum": "$value.rl.c" },
"nv": { "$sum": { "$multiply": [
{ "$cond": [
{ "$eq": [ "$value.rl.p", 2 },
1.16
{ "$cond": [
{ "$eq": [ "$value.rl.p", 3 },
1.413,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 4 },
1.622,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 5 },
1.6,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 6 },
1.753,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 7 },
3.001,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 8 },
2.818,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 9 },
3.291,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 10 },
2.824,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 11 },
2.993,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 12 },
2.699,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 13 },
1.099,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 14 },
1.035,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 15 },
1.172,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 16 },
1.013,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 17 },
0.9936,
{ "$cond": [
{ "$eq": [ "$value.rl.p", 18 },
1.069,
1
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]}
]},
"$value.rl.v"
]}}
}}
])
Nó trông có vẻ ồn ào nhưng nó là biểu mẫu hiệu quả nhất tiếp theo đối với truy vấn được hiển thị trước đó ở trên. Trên thực tế, bạn sẽ tạo giai đoạn đường ống theo cách tương tự như hiển thị ở đây .